Source code for nnabla_rl.environment_explorers.epsilon_greedy_explorer

# Copyright 2020,2021 Sony Corporation.
# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Dict, Optional, Tuple

import numpy as np

from nnabla_rl.environment_explorer import EnvironmentExplorer, EnvironmentExplorerConfig
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.random import drng
from nnabla_rl.typing import ActionSelector, IntraActionSelector, OptionSelector


def compute_epsilon(step: int, max_explore_steps: int, initial_epsilon: float, final_epsilon: float):
    assert 0 <= step
    delta_epsilon = step / max_explore_steps * (initial_epsilon - final_epsilon)
    epsilon = initial_epsilon - delta_epsilon
    return max(epsilon, final_epsilon)


def epsilon_greedy_action_selection(
    state: np.ndarray,
    greedy_action_selector: ActionSelector,
    random_action_selector: ActionSelector,
    epsilon: float,
    *,
    begin_of_episode: bool = False,
):
    if np.random.rand() > epsilon:
        # optimal action
        return greedy_action_selector(state, begin_of_episode=begin_of_episode), True
    else:
        # random action
        return random_action_selector(state, begin_of_episode=begin_of_episode), False


@dataclass
class NoDecayEpsilonGreedyExplorerConfig(EnvironmentExplorerConfig):
    epsilon: float = 1.0

    def __post_init__(self):
        self._assert_between(self.epsilon, 0.0, 1.0, "epsilon")


class NoDecayEpsilonGreedyExplorer(EnvironmentExplorer):
    # type declarations to type check with mypy
    # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar
    # See https://mypy.readthedocs.io/en/stable/class_basics.html for details
    _config: NoDecayEpsilonGreedyExplorerConfig

    def __init__(
        self,
        greedy_action_selector: ActionSelector,
        random_action_selector: ActionSelector,
        env_info: EnvironmentInfo,
        config: NoDecayEpsilonGreedyExplorerConfig = NoDecayEpsilonGreedyExplorerConfig(),
    ):
        super().__init__(env_info, config)
        self._greedy_action_selector = greedy_action_selector
        self._random_action_selector = random_action_selector

    def action(self, step: int, state: np.ndarray, *, begin_of_episode: bool = False) -> Tuple[np.ndarray, Dict]:
        epsilon = self._config.epsilon
        (action, info), _ = epsilon_greedy_action_selection(
            state,
            self._greedy_action_selector,
            self._random_action_selector,
            epsilon,
            begin_of_episode=begin_of_episode,
        )
        return action, info


@dataclass
class LinearDecayEpsilonGreedyExplorerConfig(EnvironmentExplorerConfig):
    """List of configurations for Linear decay epsilon-greedy explorer.

    Args:
        initial_epsilon (float): Initial value of epsilon. Defaults to 1.0.
        final_epsilon (float): Final value of epsilon after max_explore_steps.
            This value must be smaller than initial_epsilon. Defaults to 0.05.
        max_explore_steps (int): Number of steps to decay epsilon from initial_epsilon to final_epsilon.
            Defaults to 1000000.
        append_explorer_info (bool): Flag for appending explorer info to the action info. \
            The explore info includes whether the action is greedy or not, and explore rate. Defaults to False.
    """

    initial_epsilon: float = 1.0
    final_epsilon: float = 0.05
    max_explore_steps: int = 1000000
    append_explorer_info: bool = False

    def __post_init__(self):
        self._assert_between(self.initial_epsilon, 0.0, 1.0, "initial_epsilon")
        self._assert_between(self.final_epsilon, 0.0, 1.0, "final_epsilon")
        self._assert_descending_order([self.initial_epsilon, self.final_epsilon], "initial/final epsilon")
        self._assert_positive(self.max_explore_steps, "max_explore_steps")


[docs]class LinearDecayEpsilonGreedyExplorer(EnvironmentExplorer): """Linear decay epsilon-greedy explorer. Epsilon-greedy style explorer. Epsilon is linearly decayed until max_eplore_steps set in the config. Args: greedy_action_selector (:py:class:`ActionSelector <nnabla_rl.typing.ActionSelector>`): callable which computes greedy action with respect to current state. random_action_selector (:py:class:`ActionSelector <nnabla_rl.typing.ActionSelector>`): callable which computes random action that can be executed in the environment. env_info (:py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): environment info config (:py:class:`LinearDecayEpsilonGreedyExplorerConfig\ <nnabla_rl.environment_explorers.LinearDecayEpsilonGreedyExplorerConfig>`): the config of this class. """ # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _config: LinearDecayEpsilonGreedyExplorerConfig def __init__( self, greedy_action_selector: ActionSelector, random_action_selector: ActionSelector, env_info: EnvironmentInfo, config: LinearDecayEpsilonGreedyExplorerConfig = LinearDecayEpsilonGreedyExplorerConfig(), ): super().__init__(env_info, config) self._greedy_action_selector = greedy_action_selector self._random_action_selector = random_action_selector
[docs] def action(self, step: int, state: np.ndarray, *, begin_of_episode: bool = False) -> Tuple[np.ndarray, Dict]: epsilon = compute_epsilon( step, self._config.max_explore_steps, self._config.initial_epsilon, self._config.final_epsilon ) (action, info), is_greedy_action = epsilon_greedy_action_selection( state, self._greedy_action_selector, self._random_action_selector, epsilon, begin_of_episode=begin_of_episode, ) if self._config.append_explorer_info: info.update({"greedy_action": is_greedy_action, "explore_rate": epsilon}) return action, info
def epsilon_greedy_option_selection( state: np.ndarray, greedy_option_selector: OptionSelector, random_option_selector: OptionSelector, epsilon: float, option: Optional[np.ndarray] = None, *, begin_of_episode: bool = False, ): if drng.random() > epsilon: return greedy_option_selector(state, option, begin_of_episode=begin_of_episode), True else: return random_option_selector(state, option, begin_of_episode=begin_of_episode), False @dataclass class LinearDecayEpsilonGreedyOptionExplorerConfig(EnvironmentExplorerConfig): num_options: int = 8 initial_option_epsilon: float = 1.0 final_option_epsilon: float = 0.05 max_option_explore_steps: int = 1000000 append_explorer_info: bool = False def __post_init__(self): self._assert_between(self.initial_option_epsilon, 0.0, 1.0, "initial_option_epsilon") self._assert_between(self.final_option_epsilon, 0.0, 1.0, "final_option_epsilon") self._assert_descending_order( [self.initial_option_epsilon, self.final_option_epsilon], "initial/final option epsilon" ) self._assert_positive(self.max_option_explore_steps, "max_option_explore_steps") class LinearDecayEpsilonGreedyOptionExplorer(EnvironmentExplorer): _config: LinearDecayEpsilonGreedyOptionExplorerConfig _option: np.ndarray def __init__( self, env_info: EnvironmentInfo, config: LinearDecayEpsilonGreedyOptionExplorerConfig, random_option_selector: OptionSelector, greedy_option_selector: OptionSelector, intra_action_selector: IntraActionSelector, ): super().__init__(env_info, config) self._random_option_selector = random_option_selector self._greedy_option_selector = greedy_option_selector self._intra_action_selector = intra_action_selector def action(self, steps: int, state: np.ndarray, *, begin_of_episode: bool = False) -> Tuple[np.ndarray, Dict]: epsilon = compute_epsilon( max(0, steps - self._config.warmup_random_steps), self._config.max_option_explore_steps, self._config.initial_option_epsilon, self._config.final_option_epsilon, ) (self._option, option_info), is_greedy_option = epsilon_greedy_option_selection( state, greedy_option_selector=self._greedy_option_selector, random_option_selector=self._random_option_selector, epsilon=epsilon, option=self._option, begin_of_episode=begin_of_episode, ) option_info.update({"option": self._option}) if self._config.append_explorer_info: option_info.update({"greedy_option": is_greedy_option, "explore_rate": epsilon}) action, action_info = self._intra_action_selector(state, self._option, begin_of_episode=begin_of_episode) option_info.update(action_info) return action, option_info def _warmup_action(self, env, *, begin_of_episode=False): self._option = drng.integers(low=0, high=self._config.num_options, size=1) option_info = {"option": self._option, "termination": True} action, action_info = self._intra_action_selector(self._state, self._option, begin_of_episode=begin_of_episode) if self._config.append_explorer_info: option_info.update({"greedy_option": False, "explore_rate": 1.0}) option_info.update(action_info) return action, option_info