Source code for nnabla_rl.algorithms.sac

# Copyright 2020,2021 Sony Corporation.
# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union

import gym

import nnabla as nn
import nnabla.solvers as NS
import nnabla_rl.environment_explorers as EE
import nnabla_rl.model_trainers as MT
from nnabla_rl.algorithm import Algorithm, AlgorithmConfig, eval_api
from nnabla_rl.algorithms.common_utils import _StochasticPolicyActionSelector
from nnabla_rl.builders import ExplorerBuilder, ModelBuilder, ReplayBufferBuilder, SolverBuilder
from nnabla_rl.environment_explorer import EnvironmentExplorer
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.model_trainers.model_trainer import ModelTrainer, TrainingBatch
from nnabla_rl.models import QFunction, SACPolicy, SACQFunction, StochasticPolicy
from nnabla_rl.replay_buffer import ReplayBuffer
from nnabla_rl.utils import context
from nnabla_rl.utils.data import marshal_experiences
from nnabla_rl.utils.misc import sync_model


[docs]@dataclass class SACConfig(AlgorithmConfig): """SACConfig List of configurations for SAC algorithm. Args: gamma (float): discount factor of rewards. Defaults to 0.99. learning_rate (float): learning rate which is set to all solvers. \ You can customize/override the learning rate for each solver by implementing the \ (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`) by yourself. \ Defaults to 0.0003. batch_size(int): training batch size. Defaults to 256. tau (float): target network's parameter update coefficient. Defaults to 0.005. environment_steps (int): Number of steps to interact with the environment on each iteration. Defaults to 1. gradient_steps (int): Number of parameter updates to perform on each iteration. Defaults to 1. target_entropy (float, optional): Target entropy value. Defaults to None. initial_temperature (float, optional): Initial value of temperature parameter. Defaults to None. fix_temperature (bool): If true the temperature parameter will not be trained. Defaults to False. start_timesteps (int): the timestep when training starts.\ The algorithm will collect experiences from the environment by acting randomly until this timestep.\ Defaults to 10000. replay_buffer_size (int): capacity of the replay buffer. Defaults to 1000000. num_steps (int): number of steps for N-step Q targets. Defaults to 1. actor_unroll_steps (int): Number of steps to unroll actor's tranining network.\ The network will be unrolled even though the provided model doesn't have RNN layers.\ Defaults to 1. actor_burn_in_steps (int): Number of burn-in steps to initiaze actor's recurrent layer states during training.\ This flag does not take effect if given model is not an RNN model.\ Defaults to 0. actor_reset_rnn_on_terminal (bool): Reset actor's recurrent internal states to zero during training\ if episode ends. This flag does not take effect if given model is not an RNN model.\ Defaults to False. critic_unroll_steps (int): Number of steps to unroll critic's tranining network.\ The network will be unrolled even though the provided model doesn't have RNN layers.\ Defaults to 1. critic_burn_in_steps (int): Number of burn-in steps to initiaze critic's recurrent layer states\ during training. This flag does not take effect if given model is not an RNN model.\ Defaults to 0. critic_reset_rnn_on_terminal (bool): Reset critic's recurrent internal states to zero during training\ if episode ends. This flag does not take effect if given model is not an RNN model.\ Defaults to False. """ gamma: float = 0.99 learning_rate: float = 3.0*1e-4 batch_size: int = 256 tau: float = 0.005 environment_steps: int = 1 gradient_steps: int = 1 target_entropy: Optional[float] = None initial_temperature: Optional[float] = None fix_temperature: bool = False start_timesteps: int = 10000 replay_buffer_size: int = 1000000 num_steps: int = 1 # rnn model support actor_unroll_steps: int = 1 actor_burn_in_steps: int = 0 actor_reset_rnn_on_terminal: bool = True critic_unroll_steps: int = 1 critic_burn_in_steps: int = 0 critic_reset_rnn_on_terminal: bool = True def __post_init__(self): """__post_init__ Check set values are in valid range.""" self._assert_between(self.tau, 0.0, 1.0, 'tau') self._assert_between(self.gamma, 0.0, 1.0, 'gamma') self._assert_positive(self.gradient_steps, 'gradient_steps') self._assert_positive(self.environment_steps, 'environment_steps') if self.initial_temperature is not None: self._assert_positive( self.initial_temperature, 'initial_temperature') self._assert_positive(self.start_timesteps, 'start_timesteps') self._assert_positive(self.critic_unroll_steps, 'critic_unroll_steps') self._assert_positive_or_zero(self.critic_burn_in_steps, 'critic_burn_in_steps') self._assert_positive(self.actor_unroll_steps, 'actor_unroll_steps') self._assert_positive_or_zero(self.actor_burn_in_steps, 'actor_burn_in_steps')
class DefaultQFunctionBuilder(ModelBuilder[QFunction]): def build_model(self, # type: ignore[override] scope_name: str, env_info: EnvironmentInfo, algorithm_config: SACConfig, **kwargs) -> QFunction: return SACQFunction(scope_name) class DefaultPolicyBuilder(ModelBuilder[StochasticPolicy]): def build_model(self, # type: ignore[override] scope_name: str, env_info: EnvironmentInfo, algorithm_config: SACConfig, **kwargs) -> StochasticPolicy: return SACPolicy(scope_name, env_info.action_dim) class DefaultSolverBuilder(SolverBuilder): def build_solver(self, # type: ignore[override] env_info: EnvironmentInfo, algorithm_config: SACConfig, **kwargs) -> nn.solver.Solver: return NS.Adam(alpha=algorithm_config.learning_rate) class DefaultReplayBufferBuilder(ReplayBufferBuilder): def build_replay_buffer(self, # type: ignore[override] env_info: EnvironmentInfo, algorithm_config: SACConfig, **kwargs) -> ReplayBuffer: return ReplayBuffer(capacity=algorithm_config.replay_buffer_size) class DefaultExplorerBuilder(ExplorerBuilder): def build_explorer(self, # type: ignore[override] env_info: EnvironmentInfo, algorithm_config: SACConfig, algorithm: "SAC", **kwargs) -> EnvironmentExplorer: explorer_config = EE.RawPolicyExplorerConfig( warmup_random_steps=algorithm_config.start_timesteps, initial_step_num=algorithm.iteration_num, timelimit_as_terminal=False ) explorer = EE.RawPolicyExplorer(policy_action_selector=algorithm._exploration_action_selector, env_info=env_info, config=explorer_config) return explorer
[docs]class SAC(Algorithm): """Soft Actor-Critic (SAC) algorithm implementation. This class implements the extended version of Soft Actor Critic (SAC) algorithm proposed by T. Haarnoja, et al. in the paper: "Soft Actor-Critic Algorithms and Applications" For detail see: https://arxiv.org/abs/1812.05905 This algorithm is slightly differs from the implementation of Soft Actor-Critic algorithm presented also by T. Haarnoja, et al. in the following paper: https://arxiv.org/abs/1801.01290 The temperature parameter is adjusted automatically instead of providing reward scalar as a hyper parameter. Args: env_or_env_info \ (gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): the environment to train or environment info config (:py:class:`SACConfig <nnabla_rl.algorithms.sac.SACConfig>`): configuration of the SAC algorithm q_function_builder (:py:class:`ModelBuilder[QFunction] <nnabla_rl.builders.ModelBuilder>`): builder of q function models q_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of q function solvers policy_builder (:py:class:`ModelBuilder[StochasticPolicy] <nnabla_rl.builders.ModelBuilder>`): builder of actor models policy_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of policy solvers temperature_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of temperature solvers replay_buffer_builder (:py:class:`ReplayBufferBuilder <nnabla_rl.builders.ReplayBufferBuilder>`): builder of replay_buffer explorer_builder (:py:class:`ExplorerBuilder <nnabla_rl.builders.ExplorerBuilder>`): builder of environment explorer """ # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _config: SACConfig _train_q_functions: List[QFunction] _train_q_solvers: Dict[str, nn.solver.Solver] _target_q_functions: List[QFunction] _pi: StochasticPolicy _temperature: MT.policy_trainers.soft_policy_trainer.AdjustableTemperature _temperature_solver: Optional[nn.solver.Solver] _replay_buffer: ReplayBuffer _explorer_builder: ExplorerBuilder _environment_explorer: EnvironmentExplorer _policy_trainer: ModelTrainer _q_function_trainer: ModelTrainer _policy_trainer_state: Dict[str, Any] _q_function_trainer_state: Dict[str, Any] def __init__(self, env_or_env_info: Union[gym.Env, EnvironmentInfo], config: SACConfig = SACConfig(), q_function_builder: ModelBuilder[QFunction] = DefaultQFunctionBuilder(), q_solver_builder: SolverBuilder = DefaultSolverBuilder(), policy_builder: ModelBuilder[StochasticPolicy] = DefaultPolicyBuilder(), policy_solver_builder: SolverBuilder = DefaultSolverBuilder(), temperature_solver_builder: SolverBuilder = DefaultSolverBuilder(), replay_buffer_builder: ReplayBufferBuilder = DefaultReplayBufferBuilder(), explorer_builder: ExplorerBuilder = DefaultExplorerBuilder()): super(SAC, self).__init__(env_or_env_info, config=config) self._explorer_builder = explorer_builder with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): self._train_q_functions = self._build_q_functions(q_function_builder) self._train_q_solvers = {q.scope_name: q_solver_builder(self._env_info, self._config) for q in self._train_q_functions} self._target_q_functions = [q.deepcopy('target_' + q.scope_name) for q in self._train_q_functions] self._pi = policy_builder(scope_name="pi", env_info=self._env_info, algorithm_config=self._config) self._pi_solver = policy_solver_builder(self._env_info, self._config) self._temperature = self._setup_temperature_model() if not self._config.fix_temperature: self._temperature_solver = temperature_solver_builder(self._env_info, self._config) else: self._temperature_solver = None self._replay_buffer = replay_buffer_builder(self._env_info, self._config) self._evaluation_actor = self._setup_evaluation_actor() self._exploration_actor = self._setup_exploration_actor() @eval_api def compute_eval_action(self, state, *, begin_of_episode=False, extra_info={}): with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): action, _ = self._evaluation_action_selector(state, begin_of_episode=begin_of_episode) return action def _before_training_start(self, env_or_buffer): # set context globally to ensure that the training runs on configured gpu context.set_nnabla_context(self._config.gpu_id) self._environment_explorer = self._setup_environment_explorer(env_or_buffer) self._policy_trainer = self._setup_policy_training(env_or_buffer) self._q_function_trainer = self._setup_q_function_training(env_or_buffer) def _setup_evaluation_actor(self): return _StochasticPolicyActionSelector(self._env_info, self._pi.shallowcopy(), deterministic=True) def _setup_exploration_actor(self): return _StochasticPolicyActionSelector(self._env_info, self._pi.shallowcopy(), deterministic=False) def _setup_environment_explorer(self, env_or_buffer): return None if self._is_buffer(env_or_buffer) else self._explorer_builder(self._env_info, self._config, self) def _setup_temperature_model(self): return MT.policy_trainers.soft_policy_trainer.AdjustableTemperature( scope_name='temperature', initial_value=self._config.initial_temperature) def _setup_policy_training(self, env_or_buffer): policy_trainer_config = MT.policy_trainers.SoftPolicyTrainerConfig( fixed_temperature=self._config.fix_temperature, target_entropy=self._config.target_entropy, unroll_steps=self._config.actor_unroll_steps, burn_in_steps=self._config.actor_burn_in_steps, reset_on_terminal=self._config.actor_reset_rnn_on_terminal) policy_trainer = MT.policy_trainers.SoftPolicyTrainer( models=self._pi, solvers={self._pi.scope_name: self._pi_solver}, temperature=self._temperature, temperature_solver=self._temperature_solver, q_functions=self._train_q_functions, env_info=self._env_info, config=policy_trainer_config) return policy_trainer def _setup_q_function_training(self, env_or_buffer): # training input/loss variables q_function_trainer_config = MT.q_value_trainers.SoftQTrainerConfig( reduction_method='mean', grad_clip=None, num_steps=self._config.num_steps, unroll_steps=self._config.critic_unroll_steps, burn_in_steps=self._config.critic_burn_in_steps, reset_on_terminal=self._config.critic_reset_rnn_on_terminal) q_function_trainer = MT.q_value_trainers.SoftQTrainer( train_functions=self._train_q_functions, solvers=self._train_q_solvers, target_functions=self._target_q_functions, target_policy=self._pi, temperature=self._policy_trainer.get_temperature(), env_info=self._env_info, config=q_function_trainer_config) for q, target_q in zip(self._train_q_functions, self._target_q_functions): sync_model(q, target_q) return q_function_trainer def _run_online_training_iteration(self, env): for _ in range(self._config.environment_steps): self._run_environment_step(env) for _ in range(self._config.gradient_steps): self._run_gradient_step(self._replay_buffer) def _run_offline_training_iteration(self, buffer): self._sac_training(buffer) def _run_environment_step(self, env): experiences = self._environment_explorer.step(env) self._replay_buffer.append_all(experiences) def _run_gradient_step(self, replay_buffer): if self._config.start_timesteps < self.iteration_num: self._sac_training(replay_buffer) def _sac_training(self, replay_buffer): actor_steps = self._config.actor_burn_in_steps + self._config.actor_unroll_steps critic_steps = self._config.num_steps + self._config.critic_burn_in_steps + self._config.critic_unroll_steps - 1 num_steps = max(actor_steps, critic_steps) experiences_tuple, info = replay_buffer.sample(self._config.batch_size, num_steps=num_steps) if num_steps == 1: experiences_tuple = (experiences_tuple, ) assert len(experiences_tuple) == num_steps batch = None for experiences in reversed(experiences_tuple): (s, a, r, non_terminal, s_next, rnn_states_dict, *_) = marshal_experiences(experiences) rnn_states = rnn_states_dict['rnn_states'] if 'rnn_states' in rnn_states_dict else {} batch = TrainingBatch(batch_size=self._config.batch_size, s_current=s, a_current=a, gamma=self._config.gamma, reward=r, non_terminal=non_terminal, s_next=s_next, weight=info['weights'], next_step_batch=batch, rnn_states=rnn_states) self._q_function_trainer_state = self._q_function_trainer.train(batch) for q, target_q in zip(self._train_q_functions, self._target_q_functions): sync_model(q, target_q, tau=self._config.tau) self._policy_trainer_state = self._policy_trainer.train(batch) td_errors = self._q_function_trainer_state['td_errors'] replay_buffer.update_priorities(td_errors) def _evaluation_action_selector(self, s, *, begin_of_episode=False): return self._evaluation_actor(s, begin_of_episode=begin_of_episode) def _exploration_action_selector(self, s, *, begin_of_episode=False): return self._exploration_actor(s, begin_of_episode=begin_of_episode) def _build_q_functions(self, q_function_builder): q_functions = [] for i in range(2): q = q_function_builder(scope_name=f"q{i+1}", env_info=self._env_info, algorithm_config=self._config) q_functions.append(q) return q_functions def _models(self): models = [*self._train_q_functions, self._pi, self._temperature] return {model.scope_name: model for model in models} def _solvers(self): solvers = {} solvers[self._pi.scope_name] = self._pi_solver solvers.update(self._train_q_solvers) if self._temperature_solver is not None: solvers[self._temperature.scope_name] = self._temperature_solver return solvers
[docs] @classmethod def is_rnn_supported(self): return True
[docs] @classmethod def is_supported_env(cls, env_or_env_info): env_info = EnvironmentInfo.from_env(env_or_env_info) if isinstance(env_or_env_info, gym.Env) \ else env_or_env_info return not env_info.is_discrete_action_env() and not env_info.is_tuple_action_env()
@property def latest_iteration_state(self): latest_iteration_state = super(SAC, self).latest_iteration_state if hasattr(self, '_policy_trainer_state'): latest_iteration_state['scalar'].update({'pi_loss': float(self._policy_trainer_state['pi_loss'])}) if hasattr(self, '_q_function_trainer_state'): latest_iteration_state['scalar'].update({'q_loss': float(self._q_function_trainer_state['q_loss'])}) latest_iteration_state['histogram'].update( {'td_errors': self._q_function_trainer_state['td_errors'].flatten()}) return latest_iteration_state @property def trainers(self): return {"q_function": self._q_function_trainer, "policy": self._policy_trainer}