Source code for nnabla_rl.algorithms.ppo

# Copyright 2020,2021 Sony Corporation.
# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing as mp
import os
import threading as th
from collections import namedtuple
from dataclasses import dataclass
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union

import gym
import numpy as np

import nnabla as nn
import nnabla.solvers as NS
import nnabla_rl.environment_explorers as EE
import nnabla_rl.model_trainers as MT
import nnabla_rl.preprocessors as RP
import nnabla_rl.utils.context as context
from nnabla_rl.algorithm import Algorithm, AlgorithmConfig, eval_api
from nnabla_rl.algorithms.common_utils import (_StatePreprocessedStochasticPolicy, _StatePreprocessedVFunction,
                                               _StochasticPolicyActionSelector, compute_v_target_and_advantage)
from nnabla_rl.builders import ModelBuilder, PreprocessorBuilder, SolverBuilder
from nnabla_rl.environment_explorer import EnvironmentExplorer
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.model_trainers.model_trainer import ModelTrainer, TrainingBatch
from nnabla_rl.models import (Model, PPOAtariPolicy, PPOAtariVFunction, PPOMujocoPolicy, PPOMujocoVFunction,
                              PPOSharedFunctionHead, StochasticPolicy, VFunction)
from nnabla_rl.preprocessors.preprocessor import Preprocessor
from nnabla_rl.replay_buffer import ReplayBuffer
from nnabla_rl.replay_buffers import BufferIterator
from nnabla_rl.utils.data import add_batch_dimension, marshal_experiences, set_data_to_variable, unzip
from nnabla_rl.utils.misc import create_variable
from nnabla_rl.utils.multiprocess import (copy_mp_arrays_to_params, copy_params_to_mp_arrays, mp_array_from_np_array,
                                          mp_to_np_array, new_mp_arrays_from_params, np_to_mp_array)
from nnabla_rl.utils.reproductions import set_global_seed


[docs]@dataclass class PPOConfig(AlgorithmConfig): """PPOConfig List of configurations for PPO algorithm. Args: epsilon (float): PPO's probability ratio clipping range. Defaults to 0.1 gamma (float): discount factor of rewards. Defaults to 0.99. learning_rate (float): learning rate which is set to all solvers. \ You can customize/override the learning rate for each solver by implementing the \ (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`) by yourself. \ Defaults to 0.00025. batch_size(int): training batch size. Defaults to 256. lmb (float): scalar of lambda return's computation in GAE. Defaults to 0.95. entropy_coefficient (float): scalar of entropy regularization term. Defaults to 0.01. value_coefficient (float): scalar of value loss. Defaults to 1.0. actor_num (int): Number of parallel actors. Defaults to 8. epochs (int): Number of epochs to perform in each training iteration. Defaults to 3. actor_timesteps (int): Number of timesteps to interact with the environment by the actors. Defaults to 128. total_timesteps (int): Total number of timesteps to interact with the environment. Defaults to 10000. decrease_alpha (bool): Flag to control whether to decrease the learning rate linearly during the training.\ Defaults to True. timelimit_as_terminal (bool): Treat as done if the environment reaches the \ `timelimit <https://github.com/openai/gym/blob/master/gym/wrappers/time_limit.py>`_.\ Defaults to False. seed (int): base seed of random number generator used by the actors. Defaults to 1. preprocess_state (bool): Enable preprocessing the states in the collected experiences\ before feeding as training batch. Defaults to True. """ epsilon: float = 0.1 gamma: float = 0.99 learning_rate: float = 2.5*1e-4 lmb: float = 0.95 entropy_coefficient: float = 0.01 value_coefficient: float = 1.0 actor_num: int = 8 epochs: int = 3 batch_size: int = 32 * 8 actor_timesteps: int = 128 total_timesteps: int = 10000 decrease_alpha: bool = True timelimit_as_terminal: bool = False seed: int = 1 preprocess_state: bool = True def __post_init__(self): """__post_init__ Check the set values are in valid range. """ self._assert_between(self.gamma, 0.0, 1.0, 'gamma') self._assert_positive(self.actor_num, 'actor num') self._assert_positive(self.epochs, 'epochs') self._assert_positive(self.batch_size, 'batch_size') self._assert_positive(self.actor_timesteps, 'actor_timesteps') self._assert_positive(self.total_timesteps, 'total_timesteps')
class DefaultPolicyBuilder(ModelBuilder[StochasticPolicy]): def build_model(self, # type: ignore[override] scope_name: str, env_info: EnvironmentInfo, algorithm_config: PPOConfig, **kwargs) -> StochasticPolicy: if env_info.is_discrete_action_env(): # scope name is same as that of v-function -> parameter is shared across models automatically return self._build_shared_policy("shared", env_info, algorithm_config) else: return self._build_mujoco_policy(scope_name, env_info, algorithm_config) def _build_shared_policy(self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: PPOConfig, **kwargs) -> StochasticPolicy: _shared_function_head = PPOSharedFunctionHead(scope_name=scope_name, state_shape=env_info.state_shape, action_dim=env_info.action_dim) return PPOAtariPolicy(scope_name=scope_name, action_dim=env_info.action_dim, head=_shared_function_head) def _build_mujoco_policy(self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: PPOConfig, **kwargs) -> StochasticPolicy: return PPOMujocoPolicy(scope_name=scope_name, action_dim=env_info.action_dim) class DefaultVFunctionBuilder(ModelBuilder[VFunction]): def build_model(self, # type: ignore[override] scope_name: str, env_info: EnvironmentInfo, algorithm_config: PPOConfig, **kwargs) -> VFunction: if env_info.is_discrete_action_env(): # scope name is same as that of policy -> parameter is shared across models automatically return self._build_shared_v_function("shared", env_info, algorithm_config) else: return self._build_mujoco_v_function(scope_name, env_info, algorithm_config) def _build_shared_v_function(self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: PPOConfig, **kwargs) -> VFunction: _shared_function_head = PPOSharedFunctionHead(scope_name=scope_name, state_shape=env_info.state_shape, action_dim=env_info.action_dim) return PPOAtariVFunction(scope_name=scope_name, head=_shared_function_head) def _build_mujoco_v_function(self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: PPOConfig, **kwargs) -> VFunction: return PPOMujocoVFunction(scope_name=scope_name) class DefaultSolverBuilder(SolverBuilder): def build_solver(self, env_info: EnvironmentInfo, algorithm_config: AlgorithmConfig, **kwargs) -> nn.solver.Solver: assert isinstance(algorithm_config, PPOConfig) return NS.Adam(alpha=algorithm_config.learning_rate, eps=1e-5) class DefaultPreprocessorBuilder(PreprocessorBuilder): def build_preprocessor(self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: AlgorithmConfig, **kwargs) -> Preprocessor: return RP.RunningMeanNormalizer('preprocessor', env_info.state_shape, value_clip=(-5.0, 5.0))
[docs]class PPO(Algorithm): """Proximal Policy Optimization (PPO) algorithm implementation. This class implements the Proximal Policy Optimization (PPO) algorithm proposed by J. Schulman, et al. in the paper: "Proximal Policy Optimization Algorithms" For detail see: https://arxiv.org/abs/1707.06347 This algorithm only supports online training. Args: env_or_env_info\ (gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): the environment to train or environment info config (:py:class:`PPOConfig <nnabla_rl.algorithms.ppo.PPOConfig>`): configuration of PPO algorithm v_function_builder (:py:class:`ModelBuilder[VFunction] <nnabla_rl.builders.ModelBuilder>`): builder of v function models v_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder for v function solvers policy_builder (:py:class:`ModelBuilder[StochasicPolicy] <nnabla_rl.builders.ModelBuilder>`): builder of policy models policy_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder for policy solvers state_preprocessor_builder (None or :py:class:`PreprocessorBuilder <nnabla_rl.builders.PreprocessorBuilder>`): state preprocessor builder to preprocess the states """ # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _config: PPOConfig _v_function: VFunction _v_function_solver: nn.solver.Solver _policy: StochasticPolicy _policy_solver: nn.solver.Solver _state_preprocessor: Optional[Preprocessor] _policy_trainer: ModelTrainer _v_function_trainer: ModelTrainer _policy_solver_builder: SolverBuilder _v_solver_builder: SolverBuilder _actors: List['_PPOActor'] _actor_processes: List[Union[mp.Process, th.Thread]] _policy_trainer_state: Dict[str, Any] _v_function_trainer_state: Dict[str, Any] def __init__(self, env_or_env_info: Union[gym.Env, EnvironmentInfo], config: PPOConfig = PPOConfig(), v_function_builder: ModelBuilder[VFunction] = DefaultVFunctionBuilder(), v_solver_builder: SolverBuilder = DefaultSolverBuilder(), policy_builder: ModelBuilder[StochasticPolicy] = DefaultPolicyBuilder(), policy_solver_builder: SolverBuilder = DefaultSolverBuilder(), state_preprocessor_builder: Optional[PreprocessorBuilder] = DefaultPreprocessorBuilder()): super(PPO, self).__init__(env_or_env_info, config=config) # Initialize on cpu and change the context later with nn.context_scope(context.get_nnabla_context(-1)): self._v_function = v_function_builder('v', self._env_info, self._config) self._policy = policy_builder('pi', self._env_info, self._config) self._state_preprocessor = None if self._config.preprocess_state and state_preprocessor_builder is not None: preprocessor = state_preprocessor_builder('preprocessor', self._env_info, self._config) assert preprocessor is not None self._v_function = _StatePreprocessedVFunction(v_function=self._v_function, preprocessor=preprocessor) self._policy = _StatePreprocessedStochasticPolicy(policy=self._policy, preprocessor=preprocessor) self._state_preprocessor = preprocessor self._policy_solver = policy_solver_builder(self._env_info, self._config) self._policy_solver_builder = policy_solver_builder # keep for later use self._v_function_solver = v_solver_builder(self._env_info, self._config) self._v_solver_builder = v_solver_builder # keep for later use self._evaluation_actor = _StochasticPolicyActionSelector( self._env_info, self._policy.shallowcopy(), deterministic=False) @eval_api def compute_eval_action(self, state, *, begin_of_episode=False, extra_info={}): with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): action, *_ = self._evaluation_action_selector(state, begin_of_episode=begin_of_episode) return action def _before_training_start(self, env_or_buffer): if not self._is_env(env_or_buffer): raise ValueError('PPO only supports online training') env = env_or_buffer # FIXME: This setup is a workaround for creating underlying model parameters # If the parameter is not created, the multiprocessable array (created in launch_actor_processes) # will be empty and the agent does not learn anything context.set_nnabla_context(-1) self._setup_policy_training(env_or_buffer) self._setup_v_function_training(env_or_buffer) self._actors, self._actor_processes = self._launch_actor_processes(env) context.set_nnabla_context(self._config.gpu_id) # Setup again here to use gpu (if it is set) old_policy_solver = self._policy_solver self._policy_solver = self._policy_solver_builder(self._env_info, self._config) self._policy_trainer = self._setup_policy_training(env_or_buffer) self._policy_solver.set_states(old_policy_solver.get_states()) old_v_function_solver = self._v_function_solver self._v_function_solver = self._v_solver_builder(self._env_info, self._config) self._v_function_trainer = self._setup_v_function_training(env_or_buffer) self._v_function_solver.set_states(old_v_function_solver.get_states()) def _setup_policy_training(self, env_or_buffer): policy_trainer_config = MT.policy_trainers.PPOPolicyTrainerConfig( epsilon=self._config.epsilon, entropy_coefficient=self._config.entropy_coefficient ) policy_trainer = MT.policy_trainers.PPOPolicyTrainer( models=self._policy, solvers={self._policy.scope_name: self._policy_solver}, env_info=self._env_info, config=policy_trainer_config) return policy_trainer def _setup_v_function_training(self, env_or_buffer): # training input/loss variables v_function_trainer_config = MT.v_value.MonteCarloVTrainerConfig( reduction_method='mean', v_loss_scalar=self._config.value_coefficient ) v_function_trainer = MT.v_value.MonteCarloVTrainer( train_functions=self._v_function, solvers={self._v_function.scope_name: self._v_function_solver}, env_info=self._env_info, config=v_function_trainer_config) return v_function_trainer def _after_training_finish(self, env_or_buffer): for actor in self._actors: actor.dispose() for process in self._actor_processes: self._kill_actor_processes(process) def _run_online_training_iteration(self, env): def normalize(values): return (values - np.mean(values)) / np.std(values) update_interval = self._config.actor_timesteps * self._config.actor_num if self.iteration_num % update_interval != 0: return s, a, r, non_terminal, s_next, log_prob, v_targets, advantages = \ self._collect_experiences(self._actors) if self._config.preprocess_state: self._state_preprocessor.update(s) advantages = normalize(advantages) data = list(zip(s, a, r, non_terminal, s_next, log_prob, v_targets, advantages)) replay_buffer = ReplayBuffer() replay_buffer.append_all(data) buffer_iterator = BufferIterator(replay_buffer, batch_size=self._config.batch_size) for _ in range(self._config.epochs): for experiences, *_ in buffer_iterator: self._ppo_training(experiences) buffer_iterator.reset() def _launch_actor_processes(self, env): actors = self._build_ppo_actors(env, v_function=self._v_function, policy=self._policy, state_preprocessor=self._state_preprocessor) processes = [] for actor in actors: if self._config.actor_num == 1: # Run on same process when we have only 1 actor p = th.Thread(target=actor, daemon=False) else: p = mp.Process(target=actor, daemon=True) p.start() processes.append(p) return actors, processes def _kill_actor_processes(self, process): if isinstance(process, mp.Process): process.terminate() else: # This is a thread. do nothing pass process.join() def _run_offline_training_iteration(self, buffer): raise NotImplementedError def _collect_experiences(self, actors): def concat_result(result): if isinstance(result[0], tuple): num_items = len(result[0]) items = [] for i in range(num_items): concatenated = np.concatenate(tuple(item[i] for item in result), axis=0) items.append(concatenated) return tuple(zip(*items)) else: return np.concatenate(result, axis=0) for actor in self._actors: if self._config.actor_num != 1: actor.update_v_params(self._v_function.get_parameters()) actor.update_policy_params(self._policy.get_parameters()) if self._config.preprocess_state: actor.update_state_preprocessor_params(self._state_preprocessor.get_parameters()) else: # Its running on same process. No need to synchronize parameters with multiprocessing arrays. pass actor.run_data_collection() results = [] for actor in actors: result = actor.wait_data_collection() results.append(result) return (concat_result(result) for result in unzip(results)) def _ppo_training(self, experiences): if self._config.decrease_alpha: alpha = (1.0 - self.iteration_num / self._config.total_timesteps) alpha = np.maximum(alpha, 0.0) else: alpha = 1.0 (s, a, _, _, _, log_prob, v_target, advantage) = marshal_experiences(experiences) extra = {} extra['log_prob'] = log_prob extra['advantage'] = advantage extra['alpha'] = alpha extra['v_target'] = v_target batch = TrainingBatch(batch_size=len(experiences), s_current=s, a_current=a, extra=extra) self._policy_trainer.set_learning_rate(self._config.learning_rate * alpha) self._policy_trainer_state = self._policy_trainer.train(batch) self._v_function_trainer.set_learning_rate(self._config.learning_rate * alpha) self._v_function_trainer_state = self._v_function_trainer.train(batch) def _evaluation_action_selector(self, s, *, begin_of_episode=False): return self._evaluation_actor(s, begin_of_episode=begin_of_episode) def _models(self): models = {} models[self._v_function.scope_name] = self._v_function models[self._policy.scope_name] = self._policy if self._config.preprocess_state and isinstance(self._state_preprocessor, Model): models[self._state_preprocessor.scope_name] = self._state_preprocessor return models def _solvers(self): solvers = {} solvers[self._policy.scope_name] = self._policy_solver solvers[self._v_function.scope_name] = self._v_function_solver return solvers
[docs] @classmethod def is_supported_env(cls, env_or_env_info): env_info = EnvironmentInfo.from_env(env_or_env_info) if isinstance(env_or_env_info, gym.Env) \ else env_or_env_info return not env_info.is_tuple_action_env()
def _build_ppo_actors(self, env, v_function, policy, state_preprocessor): actors = [] for i in range(self._config.actor_num): actor = _PPOActor( actor_num=i, env=env, env_info=self._env_info, v_function=v_function, policy=policy, state_preprocessor=state_preprocessor, config=self._config) actors.append(actor) return actors @property def latest_iteration_state(self): latest_iteration_state = super(PPO, self).latest_iteration_state if hasattr(self, '_policy_trainer_state'): latest_iteration_state['scalar'].update({'pi_loss': float(self._policy_trainer_state['pi_loss'])}) if hasattr(self, '_v_function_trainer_state'): latest_iteration_state['scalar'].update({'v_loss': float(self._v_function_trainer_state['v_loss'])}) return latest_iteration_state @property def trainers(self): return {"v_function": self._v_function_trainer, "policy": self._policy_trainer}
class _PPOActor(object): # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _actor_num: int _env: gym.Env _env_info: EnvironmentInfo _v_function: VFunction _policy: StochasticPolicy _timesteps: int _gamma: float _lambda: float _config: PPOConfig _environment_explorer: EnvironmentExplorer _mp_arrays: NamedTuple def __init__(self, actor_num, env, env_info, v_function, policy, state_preprocessor, config): # These variables will be copied when process is created self._actor_num = actor_num self._env = env self._env_info = env_info self._v_function = v_function self._policy = policy self._state_preprocessor = state_preprocessor self._timesteps = config.actor_timesteps self._gamma = config.gamma self._lambda = config.lmb self._config = config # IPC communication variables self._disposed = mp.Value('i', False) self._task_start_event = mp.Event() self._task_finish_event = mp.Event() self._v_mp_arrays = new_mp_arrays_from_params(v_function.get_parameters()) self._policy_mp_arrays = new_mp_arrays_from_params(policy.get_parameters()) if self._config.preprocess_state: self._state_preprocessor_mp_arrays = new_mp_arrays_from_params(state_preprocessor.get_parameters()) explorer_config = EE.RawPolicyExplorerConfig( initial_step_num=0, timelimit_as_terminal=self._config.timelimit_as_terminal ) self._environment_explorer = EE.RawPolicyExplorer(policy_action_selector=self._compute_action, env_info=self._env_info, config=explorer_config) obs_space = self._env.observation_space action_space = self._env.action_space MultiProcessingArrays = namedtuple('MultiProcessingArrays', ['state', 'action', 'reward', 'non_terminal', 'next_state', 'log_prob', 'v_target', 'advantage']) state_mp_array = self._prepare_state_mp_array(obs_space, env_info) action_mp_array = self._prepare_action_mp_array(action_space, env_info) scalar_mp_array_shape = (self._timesteps, 1) reward_mp_array = (mp_array_from_np_array( np.empty(shape=scalar_mp_array_shape, dtype=np.float32)), scalar_mp_array_shape, np.float32) non_terminal_mp_array = (mp_array_from_np_array( np.empty(shape=scalar_mp_array_shape, dtype=np.float32)), scalar_mp_array_shape, np.float32) next_state_mp_array = self._prepare_state_mp_array(obs_space, env_info) log_prob_mp_array = (mp_array_from_np_array( np.empty(shape=scalar_mp_array_shape, dtype=np.float32)), scalar_mp_array_shape, np.float32) v_target_mp_array = (mp_array_from_np_array( np.empty(shape=scalar_mp_array_shape, dtype=np.float32)), scalar_mp_array_shape, np.float32) advantage_mp_array = (mp_array_from_np_array( np.empty(shape=scalar_mp_array_shape, dtype=np.float32)), scalar_mp_array_shape, np.float32) self._mp_arrays = MultiProcessingArrays( state_mp_array, action_mp_array, reward_mp_array, non_terminal_mp_array, next_state_mp_array, log_prob_mp_array, v_target_mp_array, advantage_mp_array ) def __call__(self): self._run_actor_loop() def dispose(self): self._disposed.value = True self._task_start_event.set() def run_data_collection(self): self._task_finish_event.clear() self._task_start_event.set() def wait_data_collection(self): def _mp_to_np_array(mp_array): if isinstance(mp_array[0], tuple): # tupled state return tuple(mp_to_np_array(*array) for array in mp_array) else: return mp_to_np_array(*mp_array) self._task_finish_event.wait() return tuple(_mp_to_np_array(mp_array) for mp_array in self._mp_arrays) def update_v_params(self, params): self._update_params(src=params, dest=self._v_mp_arrays) def update_policy_params(self, params): self._update_params(src=params, dest=self._policy_mp_arrays) def update_state_preprocessor_params(self, params): self._update_params(src=params, dest=self._state_preprocessor_mp_arrays) def _run_actor_loop(self): context.set_nnabla_context(self._config.gpu_id) if self._config.seed >= 0: seed = self._actor_num + self._config.seed else: seed = os.getpid() set_global_seed(seed) self._env.seed(seed) while (True): self._task_start_event.wait() if self._disposed.get_obj(): break if self._config.actor_num != 1: # Running on different process # Sync parameters through multiproccess arrays self._synchronize_v_params(self._v_function.get_parameters()) self._synchronize_policy_params(self._policy.get_parameters()) if self._config.preprocess_state: self._synchronize_preprocessor_params(self._state_preprocessor.get_parameters()) experiences, v_targets, advantages = self._run_data_collection() self._fill_result(experiences, v_targets, advantages) self._task_start_event.clear() self._task_finish_event.set() def _run_data_collection(self): experiences = self._environment_explorer.step(self._env, n=self._timesteps) experiences = [(s, a, r, non_terminal, s_next, info['log_prob']) for (s, a, r, non_terminal, s_next, info) in experiences] v_targets, advantages = compute_v_target_and_advantage( self._v_function, experiences, gamma=self._gamma, lmb=self._lambda) return experiences, v_targets, advantages @eval_api def _compute_action(self, s, *, begin_of_episode=False): s = add_batch_dimension(s) if not hasattr(self, '_eval_state_var'): self._eval_state_var = create_variable(1, self._env_info.state_shape) distribution = self._policy.pi(self._eval_state_var) self._eval_action, self._eval_log_prob = distribution.sample_and_compute_log_prob() set_data_to_variable(self._eval_state_var, s) nn.forward_all([self._eval_action, self._eval_log_prob]) action = np.squeeze(self._eval_action.d, axis=0) log_prob = np.squeeze(self._eval_log_prob.d, axis=0) info = {} info['log_prob'] = log_prob if self._env_info.is_discrete_action_env(): return np.int32(action), info else: return action, info def _fill_result(self, experiences, v_targets, advantages): (s, a, r, non_terminal, s_next, log_prob) = marshal_experiences(experiences) _copy_np_array_to_mp_array(s, self._mp_arrays.state) _copy_np_array_to_mp_array(a, self._mp_arrays.action) _copy_np_array_to_mp_array(r, self._mp_arrays.reward) _copy_np_array_to_mp_array(non_terminal, self._mp_arrays.non_terminal) _copy_np_array_to_mp_array(s_next, self._mp_arrays.next_state) _copy_np_array_to_mp_array(log_prob, self._mp_arrays.log_prob) _copy_np_array_to_mp_array(v_targets, self._mp_arrays.v_target) _copy_np_array_to_mp_array(advantages, self._mp_arrays.advantage) def _update_params(self, src, dest): copy_params_to_mp_arrays(src, dest) def _synchronize_v_params(self, params): self._synchronize_params(src=self._v_mp_arrays, dest=params) def _synchronize_policy_params(self, params): self._synchronize_params(src=self._policy_mp_arrays, dest=params) def _synchronize_preprocessor_params(self, params): self._synchronize_params(src=self._state_preprocessor_mp_arrays, dest=params) def _synchronize_params(self, src, dest): copy_mp_arrays_to_params(src, dest) def _prepare_state_mp_array(self, obs_space, env_info): if env_info.is_tuple_state_env(): state_mp_arrays = [] state_mp_array_shapes = [] state_mp_array_dtypes = [] for space in obs_space: state_mp_array_shape = (self._timesteps, *space.shape) state_mp_array = mp_array_from_np_array( np.empty(shape=state_mp_array_shape, dtype=space.dtype)) state_mp_array_shapes.append(state_mp_array_shape) state_mp_array_dtypes.append(space.dtype) state_mp_arrays.append(state_mp_array) return tuple(x for x in zip(state_mp_arrays, state_mp_array_shapes, state_mp_array_dtypes)) else: state_mp_array_shape = (self._timesteps, *obs_space.shape) state_mp_array = mp_array_from_np_array( np.empty(shape=state_mp_array_shape, dtype=obs_space.dtype)) return (state_mp_array, state_mp_array_shape, obs_space.dtype) def _prepare_action_mp_array(self, action_space, env_info): if env_info.is_discrete_action_env(): action_mp_array_shape = (self._timesteps, 1) action_mp_array = mp_array_from_np_array( np.empty(shape=action_mp_array_shape, dtype=action_space.dtype)) else: action_mp_array_shape = (self._timesteps, action_space.shape[0]) action_mp_array = mp_array_from_np_array( np.empty(shape=action_mp_array_shape, dtype=action_space.dtype)) return (action_mp_array, action_mp_array_shape, action_space.dtype) def _copy_np_array_to_mp_array( np_array: Union[np.ndarray, Tuple[np.ndarray]], mp_array_shape_type: Union[Tuple[np.ndarray, Tuple[int], np.dtype], Tuple[Tuple[np.ndarray, Tuple[int], np.dtype]]], ): """Copy numpy array to multiprocessing array. Args: np_array (Union[np.ndarray, Tuple[np.ndarray]]): copy source of numpy array. mp_array_shape_type (Union[Tuple[np.ndarray, Tuple[int], np.dtype], Tuple[Tuple[np.ndarray, Tuple[int], np.dtype]]]): copy target of multiprocessing array, shape and type. """ if isinstance(np_array, tuple) and isinstance(mp_array_shape_type[0], tuple): assert len(np_array) == len(mp_array_shape_type) for np_ary, mp_ary_shape_type in zip(np_array, mp_array_shape_type): np_to_mp_array(np_ary, mp_ary_shape_type[0], mp_ary_shape_type[2]) elif isinstance(np_array, np.ndarray) and isinstance(mp_array_shape_type[0], np.ndarray): np_to_mp_array(np_array, mp_array_shape_type[0], mp_array_shape_type[2]) else: raise ValueError("Invalid pair of np_array and mp_array!")