# Copyright 2021 Sony Corporation.
# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Union
import gym
import nnabla_rl.model_trainers as MT
from nnabla_rl.algorithms.iqn import (
IQN,
DefaultExplorerBuilder,
DefaultQuantileFunctionBuilder,
DefaultReplayBufferBuilder,
DefaultSolverBuilder,
IQNConfig,
risk_neutral_measure,
)
from nnabla_rl.builders import ExplorerBuilder, ModelBuilder, ReplayBufferBuilder, SolverBuilder
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.models import StateActionQuantileFunction
from nnabla_rl.utils.misc import sync_model
[docs]@dataclass
class MunchausenIQNConfig(IQNConfig):
"""List of configurations for Munchausen IQN algorithm.
Args:
entropy_temperature (float): temperature parameter of softmax policy distribution. Defaults to 0.03.
munchausen_scaling_term (float): scalar of scaled log policy. Defaults to 0.9.
clipping_value (float): Lower value of the logarithm of policy distribution. Defaults to -1.
"""
# munchausen iqn training parameters
entropy_temperature: float = 0.03
munchausen_scaling_term: float = 0.9
clipping_value: float = -1
def __post_init__(self):
"""__post_init__
Check that set values are in valid range.
"""
super().__post_init__()
self._assert_positive(self.embedding_dim, "embedding_dim")
self._assert_negative(self.clipping_value, "clipping_value")
[docs]class MunchausenIQN(IQN):
"""Munchausen-IQN algorithm implementation.
This class implements the Munchausen-IQN (Munchausen Implicit Quantile Network) algorithm
proposed by N. Vieillard, et al. in the paper: "Munchausen Reinforcement Learning"
For details see: https://proceedings.neurips.cc/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
Args:
env_or_env_info\
(gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`):
the environment to train or environment info
config (:py:class:`MunchausenIQNConfig <nnabla_rl.algorithms.munchausen_iqn.MunchausenIQNConfig>`):
configuration of MunchausenIQN algorithm
risk_measure_function (Callable[[nn.Variable], nn.Variable]): risk measure function to apply to the quantiles.
quantile_function_builder (:py:class:`ModelBuilder[StateActionQuantileFunction] \
<nnabla_rl.builders.ModelBuilder>`): builder of state-action quantile function models
quantile_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`):
builder for state action quantile function solvers
replay_buffer_builder (:py:class:`ReplayBufferBuilder <nnabla_rl.builders.ReplayBufferBuilder>`):
builder of replay_buffer
explorer_builder (:py:class:`ExplorerBuilder <nnabla_rl.builders.ExplorerBuilder>`):
builder of environment explorer
"""
# type declarations to type check with mypy
# NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar
# See https://mypy.readthedocs.io/en/stable/class_basics.html for details
_config: MunchausenIQNConfig
def __init__(
self,
env_or_env_info: Union[gym.Env, EnvironmentInfo],
config: MunchausenIQNConfig = MunchausenIQNConfig(),
risk_measure_function=risk_neutral_measure,
quantile_function_builder: ModelBuilder[StateActionQuantileFunction] = DefaultQuantileFunctionBuilder(),
quantile_solver_builder: SolverBuilder = DefaultSolverBuilder(),
replay_buffer_builder: ReplayBufferBuilder = DefaultReplayBufferBuilder(),
explorer_builder: ExplorerBuilder = DefaultExplorerBuilder(),
):
super(MunchausenIQN, self).__init__(
env_or_env_info,
config=config,
risk_measure_function=risk_measure_function,
quantile_function_builder=quantile_function_builder,
quantile_solver_builder=quantile_solver_builder,
replay_buffer_builder=replay_buffer_builder,
explorer_builder=explorer_builder,
)
def _setup_quantile_function_training(self, env_or_buffer):
trainer_config = MT.q_value_trainers.MunchausenIQNQTrainerConfig(
num_steps=self._config.num_steps,
N=self._config.N,
N_prime=self._config.N_prime,
K=self._config.K,
kappa=self._config.kappa,
tau=self._config.entropy_temperature,
alpha=self._config.munchausen_scaling_term,
clip_min=self._config.clipping_value,
clip_max=0.0,
unroll_steps=self._config.unroll_steps,
burn_in_steps=self._config.burn_in_steps,
reset_on_terminal=self._config.reset_rnn_on_terminal,
)
quantile_function_trainer = MT.q_value_trainers.MunchausenIQNQTrainer(
train_functions=self._quantile_function,
solvers={self._quantile_function.scope_name: self._quantile_function_solver},
target_function=self._target_quantile_function,
env_info=self._env_info,
config=trainer_config,
)
# NOTE: Copy initial parameters after setting up the training
# Because the parameter is created after training graph construction
sync_model(self._quantile_function, self._target_quantile_function)
return quantile_function_trainer