Source code for nnabla_rl.algorithms.icml2018_sac

# Copyright 2020,2021 Sony Corporation.
# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Any, Dict, List, Union

import gym

import nnabla as nn
import nnabla.solvers as NS
import nnabla_rl.environment_explorers as EE
import nnabla_rl.model_trainers as MT
from nnabla_rl.algorithm import Algorithm, AlgorithmConfig, eval_api
from nnabla_rl.algorithms.common_utils import _StochasticPolicyActionSelector
from nnabla_rl.builders import ExplorerBuilder, ModelBuilder, ReplayBufferBuilder, SolverBuilder
from nnabla_rl.environment_explorer import EnvironmentExplorer
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.model_trainers.model_trainer import ModelTrainer, TrainingBatch
from nnabla_rl.models import QFunction, SACPolicy, SACQFunction, SACVFunction, StochasticPolicy, VFunction
from nnabla_rl.replay_buffer import ReplayBuffer
from nnabla_rl.utils import context
from nnabla_rl.utils.data import marshal_experiences
from nnabla_rl.utils.misc import sync_model


[docs]@dataclass class ICML2018SACConfig(AlgorithmConfig): """ICML2018SACConfig List of configurations for ICML2018SAC algorithm. Args: gamma (float): discount factor of rewards. Defaults to 0.99. learning_rate (float): learning rate which is set to all solvers. \ You can customize/override the learning rate for each solver by implementing the \ (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`) by yourself. \ Defaults to 0.0003. batch_size(int): training batch size. Defaults to 256. tau (float): target network's parameter update coefficient. Defaults to 0.005. environment_steps (int): Number of steps to interact with the environment on each iteration. Defaults to 1. gradient_steps (int): Number of parameter updates to perform on each iteration. Defaults to 1. reward_scalar (float): Reward scaling factor. Obtained reward will be multiplied by this value. Defaults to 5.0. start_timesteps (int): the timestep when training starts.\ The algorithm will collect experiences from the environment by acting randomly until this timestep.\ Defaults to 10000. replay_buffer_size (int): capacity of the replay buffer. Defaults to 1000000. num_steps (int): number of steps for N-step Q targets. Defaults to 1. target_update_interval (float): the interval of target v function parameter's update. Defaults to 1. pi_unroll_steps (int): Number of steps to unroll policy's tranining network.\ The network will be unrolled even though the provided model doesn't have RNN layers.\ Defaults to 1. pi_burn_in_steps (int): Number of burn-in steps to initiaze policy's recurrent layer states during training.\ This flag does not take effect if given model is not an RNN model.\ Defaults to 0. pi_reset_rnn_on_terminal (bool): Reset policy's recurrent internal states to zero during training\ if episode ends. This flag does not take effect if given model is not an RNN model.\ Defaults to False. q_unroll_steps (int): Number of steps to unroll q-function's tranining network.\ The network will be unrolled even though the provided model doesn't have RNN layers.\ Defaults to 1. q_burn_in_steps (int): Number of burn-in steps to initiaze q-function's recurrent layer states\ during training. This flag does not take effect if given model is not an RNN model.\ Defaults to 0. q_reset_rnn_on_terminal (bool): Reset q-function's recurrent internal states to zero during training\ if episode ends. This flag does not take effect if given model is not an RNN model.\ Defaults to False. v_unroll_steps (int): Number of steps to unroll v-function's tranining network.\ The network will be unrolled even though the provided model doesn't have RNN layers.\ Defaults to 1. v_burn_in_steps (int): Number of burn-in steps to initiaze v-function's recurrent layer states\ during training. This flag does not take effect if given model is not an RNN model.\ Defaults to 0. v_reset_rnn_on_terminal (bool): Reset v-function's recurrent internal states to zero during training\ if episode ends. This flag does not take effect if given model is not an RNN model.\ Defaults to False. """ gamma: float = 0.99 learning_rate: float = 3.0 * 1e-4 batch_size: int = 256 tau: float = 0.005 environment_steps: int = 1 gradient_steps: int = 1 reward_scalar: float = 5.0 start_timesteps: int = 10000 replay_buffer_size: int = 1000000 target_update_interval: int = 1 num_steps: int = 1 # rnn model support pi_unroll_steps: int = 1 pi_burn_in_steps: int = 0 pi_reset_rnn_on_terminal: bool = True q_unroll_steps: int = 1 q_burn_in_steps: int = 0 q_reset_rnn_on_terminal: bool = True v_unroll_steps: int = 1 v_burn_in_steps: int = 0 v_reset_rnn_on_terminal: bool = True def __post_init__(self): """__post_init__ Check the values are in valid range. """ self._assert_between(self.tau, 0.0, 1.0, "tau") self._assert_between(self.gamma, 0.0, 1.0, "gamma") self._assert_positive(self.gradient_steps, "gradient_steps") self._assert_positive(self.environment_steps, "environment_steps") self._assert_positive(self.start_timesteps, "start_timesteps") self._assert_positive(self.target_update_interval, "target_update_interval") self._assert_positive(self.num_steps, "num_steps") self._assert_positive(self.pi_unroll_steps, "pi_unroll_steps") self._assert_positive_or_zero(self.pi_burn_in_steps, "pi_burn_in_steps") self._assert_positive(self.q_unroll_steps, "q_unroll_steps") self._assert_positive_or_zero(self.q_burn_in_steps, "q_burn_in_steps") self._assert_positive(self.v_unroll_steps, "v_unroll_steps") self._assert_positive_or_zero(self.v_burn_in_steps, "v_burn_in_steps")
class DefaultVFunctionBuilder(ModelBuilder[VFunction]): def build_model( # type: ignore[override] self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: ICML2018SACConfig, **kwargs, ) -> VFunction: return SACVFunction(scope_name) class DefaultQFunctionBuilder(ModelBuilder[QFunction]): def build_model( # type: ignore[override] self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: ICML2018SACConfig, **kwargs, ) -> QFunction: return SACQFunction(scope_name) class DefaultPolicyBuilder(ModelBuilder[StochasticPolicy]): def build_model( # type: ignore[override] self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: ICML2018SACConfig, **kwargs, ) -> StochasticPolicy: return SACPolicy(scope_name, env_info.action_dim) class DefaultSolverBuilder(SolverBuilder): def build_solver( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: ICML2018SACConfig, **kwargs ) -> nn.solver.Solver: assert isinstance(algorithm_config, ICML2018SACConfig) return NS.Adam(alpha=algorithm_config.learning_rate) class DefaultReplayBufferBuilder(ReplayBufferBuilder): def build_replay_buffer( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: ICML2018SACConfig, **kwargs ) -> ReplayBuffer: assert isinstance(algorithm_config, ICML2018SACConfig) return ReplayBuffer(capacity=algorithm_config.replay_buffer_size) class DefaultExplorerBuilder(ExplorerBuilder): def build_explorer( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: ICML2018SACConfig, algorithm: "ICML2018SAC", **kwargs, ) -> EnvironmentExplorer: explorer_config = EE.RawPolicyExplorerConfig( warmup_random_steps=algorithm_config.start_timesteps, reward_scalar=algorithm_config.reward_scalar, initial_step_num=algorithm.iteration_num, timelimit_as_terminal=False, ) explorer = EE.RawPolicyExplorer( policy_action_selector=algorithm._exploration_action_selector, env_info=env_info, config=explorer_config ) return explorer
[docs]class ICML2018SAC(Algorithm): """Soft Actor-Critic (SAC) algorithm. This class implements the ICML2018 version of Soft Actor Critic (SAC) algorithm proposed by T. Haarnoja, et al. in the paper: "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" For detail see: https://arxiv.org/abs/1801.01290 This implementation slightly differs from the implementation of Soft Actor-Critic algorithm presented also by T. Haarnoja, et al. in the following paper: https://arxiv.org/abs/1812.05905 You will need to scale the reward received from the environment properly to get the algorithm work. Args: env_or_env_info \ (gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): the environment to train or environment info config (:py:class:`ICML2018SACConfig <nnabla_rl.algorithms.icml2018_sac.ICML2018SACConfig>`): configuration of the ICML2018SAC algorithm v_function_builder (:py:class:`ModelBuilder[VFunction] <nnabla_rl.builders.ModelBuilder>`): builder of v function models v_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of v function solvers q_function_builder (:py:class:`ModelBuilder[QFunction] <nnabla_rl.builders.ModelBuilder>`): builder of q function models q_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of q function solvers policy_builder (:py:class:`ModelBuilder[StochasticPolicy] <nnabla_rl.builders.ModelBuilder>`): builder of actor models policy_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of policy solvers replay_buffer_builder (:py:class:`ReplayBufferBuilder <nnabla_rl.builders.ReplayBufferBuilder>`): builder of replay_buffer explorer_builder (:py:class:`ExplorerBuilder <nnabla_rl.builders.ExplorerBuilder>`): builder of environment explorer """ # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _config: ICML2018SACConfig _v: VFunction _v_solver: nn.solver.Solver _target_v: VFunction _q1: QFunction _q2: QFunction _train_q_functions: List[QFunction] _train_q_solvers: Dict[str, nn.solver.Solver] _replay_buffer: ReplayBuffer _explorer_builder: ExplorerBuilder _environment_explorer: EnvironmentExplorer _policy_trainer: ModelTrainer _q_function_trainer: ModelTrainer _v_function_trainer: ModelTrainer _eval_state_var: nn.Variable _eval_deterministic_action: nn.Variable _eval_probabilistic_action: nn.Variable _policy_trainer_state: Dict[str, Any] _q_function_trainer_state: Dict[str, Any] _v_function_trainer_state: Dict[str, Any] def __init__( self, env_or_env_info: Union[gym.Env, EnvironmentInfo], config: ICML2018SACConfig = ICML2018SACConfig(), v_function_builder: ModelBuilder[VFunction] = DefaultVFunctionBuilder(), v_solver_builder: SolverBuilder = DefaultSolverBuilder(), q_function_builder: ModelBuilder[QFunction] = DefaultQFunctionBuilder(), q_solver_builder: SolverBuilder = DefaultSolverBuilder(), policy_builder: ModelBuilder[StochasticPolicy] = DefaultPolicyBuilder(), policy_solver_builder: SolverBuilder = DefaultSolverBuilder(), replay_buffer_builder: ReplayBufferBuilder = DefaultReplayBufferBuilder(), explorer_builder: ExplorerBuilder = DefaultExplorerBuilder(), ): super(ICML2018SAC, self).__init__(env_or_env_info, config=config) self._explorer_builder = explorer_builder with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): self._v = v_function_builder(scope_name="v", env_info=self._env_info, algorithm_config=self._config) self._v_solver = v_solver_builder(env_info=self._env_info, algorithm_config=self._config) self._target_v = self._v.deepcopy("target_" + self._v.scope_name) self._q1 = q_function_builder(scope_name="q1", env_info=self._env_info, algorithm_config=self._config) self._q2 = q_function_builder(scope_name="q2", env_info=self._env_info, algorithm_config=self._config) self._train_q_functions = [self._q1, self._q2] self._train_q_solvers = {} for q in self._train_q_functions: self._train_q_solvers[q.scope_name] = q_solver_builder( env_info=self._env_info, algorithm_config=self._config ) self._pi = policy_builder(scope_name="pi", env_info=self._env_info, algorithm_config=self._config) self._pi_solver = policy_solver_builder(env_info=self._env_info, algorithm_config=self._config) self._replay_buffer = replay_buffer_builder(env_info=self._env_info, algorithm_config=self._config) self._evaluation_actor = _StochasticPolicyActionSelector( self._env_info, self._pi.shallowcopy(), deterministic=True ) self._exploration_actor = _StochasticPolicyActionSelector( self._env_info, self._pi.shallowcopy(), deterministic=False ) @eval_api def compute_eval_action(self, state, *, begin_of_episode=False, extra_info={}): with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): action, _ = self._evaluation_action_selector(state, begin_of_episode=begin_of_episode) return action def _before_training_start(self, env_or_buffer): # set context globally to ensure that the training runs on configured gpu context.set_nnabla_context(self._config.gpu_id) self._environment_explorer = self._setup_environment_explorer(env_or_buffer) self._policy_trainer = self._setup_policy_training(env_or_buffer) self._q_function_trainer = self._setup_q_function_training(env_or_buffer) self._v_function_trainer = self._setup_v_function_training(env_or_buffer) def _setup_environment_explorer(self, env_or_buffer): return None if self._is_buffer(env_or_buffer) else self._explorer_builder(self._env_info, self._config, self) def _setup_policy_training(self, env_or_buffer): # NOTE: Fix temperature to 1.0. Because This version of SAC adjusts it by scaling the reward policy_trainer_config = MT.policy_trainers.SoftPolicyTrainerConfig( fixed_temperature=True, unroll_steps=self._config.pi_unroll_steps, burn_in_steps=self._config.pi_burn_in_steps, reset_on_terminal=self._config.pi_reset_rnn_on_terminal, ) temperature = MT.policy_trainers.soft_policy_trainer.AdjustableTemperature( scope_name="temperature", initial_value=1.0 ) policy_trainer = MT.policy_trainers.SoftPolicyTrainer( models=self._pi, solvers={self._pi.scope_name: self._pi_solver}, q_functions=self._train_q_functions, temperature=temperature, temperature_solver=None, env_info=self._env_info, config=policy_trainer_config, ) return policy_trainer def _setup_q_function_training(self, env_or_buffer): q_function_trainer_param = MT.q_value_trainers.VTargetedQTrainerConfig( reduction_method="mean", q_loss_scalar=0.5, num_steps=self._config.num_steps, unroll_steps=self._config.q_unroll_steps, burn_in_steps=self._config.q_burn_in_steps, reset_on_terminal=self._config.q_reset_rnn_on_terminal, ) q_function_trainer = MT.q_value_trainers.VTargetedQTrainer( train_functions=self._train_q_functions, solvers=self._train_q_solvers, target_functions=self._target_v, env_info=self._env_info, config=q_function_trainer_param, ) return q_function_trainer def _setup_v_function_training(self, env_or_buffer): v_function_trainer_config = MT.v_value_trainers.SoftVTrainerConfig( reduction_method="mean", v_loss_scalar=0.5, unroll_steps=self._config.v_unroll_steps, burn_in_steps=self._config.v_burn_in_steps, reset_on_terminal=self._config.v_reset_rnn_on_terminal, ) v_function_trainer = MT.v_value_trainers.SoftVTrainer( train_functions=self._v, solvers={self._v.scope_name: self._v_solver}, target_functions=self._train_q_functions, # Set training q as target target_policy=self._pi, env_info=self._env_info, config=v_function_trainer_config, ) sync_model(self._v, self._target_v, 1.0) return v_function_trainer def _run_online_training_iteration(self, env): for _ in range(self._config.environment_steps): self._run_environment_step(env) for _ in range(self._config.gradient_steps): self._run_gradient_step(self._replay_buffer) def _run_offline_training_iteration(self, buffer): self._sac_training(buffer) def _run_environment_step(self, env): experiences = self._environment_explorer.step(env) self._replay_buffer.append_all(experiences) def _run_gradient_step(self, replay_buffer): if self._config.start_timesteps < self.iteration_num: self._sac_training(replay_buffer) def _sac_training(self, replay_buffer): pi_steps = self._config.pi_burn_in_steps + self._config.pi_unroll_steps q_steps = self._config.num_steps + self._config.q_burn_in_steps + self._config.q_unroll_steps - 1 v_steps = self._config.v_burn_in_steps + self._config.v_unroll_steps num_steps = max(pi_steps, max(q_steps, v_steps)) experiences_tuple, info = replay_buffer.sample(self._config.batch_size, num_steps=num_steps) if num_steps == 1: experiences_tuple = (experiences_tuple,) assert len(experiences_tuple) == num_steps batch = None for experiences in reversed(experiences_tuple): (s, a, r, non_terminal, s_next, rnn_states_dict, *_) = marshal_experiences(experiences) rnn_states = rnn_states_dict["rnn_states"] if "rnn_states" in rnn_states_dict else {} batch = TrainingBatch( batch_size=self._config.batch_size, s_current=s, a_current=a, gamma=self._config.gamma, reward=r, non_terminal=non_terminal, s_next=s_next, weight=info["weights"], next_step_batch=batch, rnn_states=rnn_states, ) # Train in the order of v -> q -> policy self._v_function_trainer_state = self._v_function_trainer.train(batch) self._q_function_trainer_state = self._q_function_trainer.train(batch) if self.iteration_num % self._config.target_update_interval == 0: sync_model(self._v, self._target_v, tau=self._config.tau) self._policy_trainer_state = self._policy_trainer.train(batch) td_errors = self._q_function_trainer_state["td_errors"] replay_buffer.update_priorities(td_errors) def _evaluation_action_selector(self, s, *, begin_of_episode=False): return self._evaluation_actor(s, begin_of_episode=begin_of_episode) def _exploration_action_selector(self, s, *, begin_of_episode=False): return self._exploration_actor(s, begin_of_episode=begin_of_episode) def _models(self): models = [self._v, self._target_v, self._q1, self._q2, self._pi] return {model.scope_name: model for model in models} def _solvers(self): solvers = {} solvers.update(self._train_q_solvers) solvers[self._v.scope_name] = self._v_solver solvers[self._pi.scope_name] = self._pi_solver return solvers
[docs] @classmethod def is_rnn_supported(cls): return True
[docs] @classmethod def is_supported_env(cls, env_or_env_info): env_info = ( EnvironmentInfo.from_env(env_or_env_info) if isinstance(env_or_env_info, gym.Env) else env_or_env_info ) return not env_info.is_discrete_action_env() and not env_info.is_tuple_action_env()
@property def latest_iteration_state(self): latest_iteration_state = super(ICML2018SAC, self).latest_iteration_state if hasattr(self, "_policy_trainer_state"): latest_iteration_state["scalar"].update({"pi_loss": float(self._policy_trainer_state["pi_loss"])}) if hasattr(self, "_v_function_trainer_state"): latest_iteration_state["scalar"].update({"v_loss": float(self._v_function_trainer_state["v_loss"])}) if hasattr(self, "_q_function_trainer_state"): latest_iteration_state["scalar"].update({"q_loss": float(self._q_function_trainer_state["q_loss"])}) latest_iteration_state["histogram"].update( {"td_errors": self._q_function_trainer_state["td_errors"].flatten()} ) return latest_iteration_state @property def trainers(self): return { "v_function": self._v_function_trainer, "q_function": self._q_function_trainer, "policy": self._policy_trainer, }