Source code for nnabla_rl.algorithms.drqn

# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Union

import gym

import nnabla as nn
import nnabla.solvers as NS
import nnabla_rl.model_trainers as MT
from nnabla_rl.algorithms.dqn import DQN, DefaultExplorerBuilder, DefaultReplayBufferBuilder, DQNConfig
from nnabla_rl.builders import ExplorerBuilder, ModelBuilder, ReplayBufferBuilder, SolverBuilder
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.models import DRQNQFunction, QFunction
from nnabla_rl.utils.misc import sync_model
from nnabla_rl.utils.solver_wrappers import AutoClipGradByNorm


[docs]@dataclass class DRQNConfig(DQNConfig): """List of configurations for DRQN algorithm. Most of the configs are inherited from DQNConfig. Args: clip_grad_norm (float): Limit the model parameter's gradient on parameter updates up to this value. If you implement SolverBuilder by yourself, this value will not take effect. Defaults to 10.0. learning_rate (float): Solver learning rate. Value overridden from DQN. Defaults to 0.1. replay_buffer_size (int): Replay buffer size. Value overridden from DQN. Defaults to 400000. unroll_steps (int): Number of steps to unroll recurrent layer during training. Value overridden from DQN. Defaults to 10. reset_rnn_on_terminal (bool): Reset recurrent internal states to zero during training if episode ends. Value overridden from DQN. Defaults to False. """ clip_grad_norm: float = 10.0 # Overriding some configurations from original DQNConfig learning_rate: float = 0.1 replay_buffer_size: int = 400000 unroll_steps: int = 10 reset_rnn_on_terminal: bool = False
class DefaultSolverBuilder(SolverBuilder): def build_solver( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: DRQNConfig, **kwargs ) -> nn.solver.Solver: decay: float = 0.95 solver = NS.Adadelta(lr=algorithm_config.learning_rate, decay=decay) solver = AutoClipGradByNorm(solver, algorithm_config.clip_grad_norm) return solver class DefaultQFunctionBuilder(ModelBuilder[QFunction]): def build_model( # type: ignore[override] self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: DRQNConfig, **kwargs, ) -> QFunction: return DRQNQFunction(scope_name, env_info.action_dim)
[docs]class DRQN(DQN): """DRQN algorithm. This class implements the Bootstrapped random update version of Deep Recurrent Q-Network (DRQN) algorithm. proposed by M. Hausknecht, et al. in the paper: "Deep Recurrent Q-Learning for Partially Observable MDPs" For details see: https://arxiv.org/pdf/1507.06527.pdf Args: env_or_env_info\ (gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): the environment to train or environment info config (:py:class:`DRQNConfig <nnabla_rl.algorithms.drqn.DRQNConfig>`): the parameter for DRQN training q_func_builder (:py:class:`ModelBuilder <nnabla_rl.builders.ModelBuilder>`): builder of q function model q_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of q function solver replay_buffer_builder (:py:class:`ReplayBufferBuilder <nnabla_rl.builders.ReplayBufferBuilder>`): builder of replay_buffer explorer_builder (:py:class:`ExplorerBuilder <nnabla_rl.builders.ExplorerBuilder>`): builder of environment explorer """ # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _config: DRQNConfig def __init__( self, env_or_env_info: Union[gym.Env, EnvironmentInfo], config: DRQNConfig = DRQNConfig(), q_func_builder: ModelBuilder[QFunction] = DefaultQFunctionBuilder(), q_solver_builder: SolverBuilder = DefaultSolverBuilder(), replay_buffer_builder: ReplayBufferBuilder = DefaultReplayBufferBuilder(), explorer_builder: ExplorerBuilder = DefaultExplorerBuilder(), ): super(DRQN, self).__init__( env_or_env_info, config=config, q_func_builder=q_func_builder, q_solver_builder=q_solver_builder, replay_buffer_builder=replay_buffer_builder, explorer_builder=explorer_builder, ) def _setup_q_function_training(self, env_or_buffer): trainer_config = MT.q_value_trainers.DQNQTrainerConfig( num_steps=self._config.num_steps, reduction_method="mean", # This parameter is different from DQN grad_clip=self._config.grad_clip, unroll_steps=self._config.unroll_steps, burn_in_steps=self._config.burn_in_steps, reset_on_terminal=self._config.reset_rnn_on_terminal, ) q_function_trainer = MT.q_value_trainers.DQNQTrainer( train_functions=self._q, solvers={self._q.scope_name: self._q_solver}, target_function=self._target_q, env_info=self._env_info, config=trainer_config, ) sync_model(self._q, self._target_q) return q_function_trainer