Source code for nnabla_rl.algorithms.dqn

# Copyright 2020,2021 Sony Corporation.
# Copyright 2021,2022,2023,2024 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union

import gym
import numpy as np

import nnabla as nn
import nnabla.solvers as NS
import nnabla_rl.environment_explorers as EE
import nnabla_rl.model_trainers as MT
from nnabla_rl.algorithm import Algorithm, AlgorithmConfig, eval_api
from nnabla_rl.algorithms.common_utils import _GreedyActionSelector
from nnabla_rl.builders import ExplorerBuilder, ModelBuilder, ReplayBufferBuilder, SolverBuilder
from nnabla_rl.environment_explorer import EnvironmentExplorer
from nnabla_rl.environment_explorers.epsilon_greedy_explorer import epsilon_greedy_action_selection
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.model_trainers.model_trainer import ModelTrainer, TrainingBatch
from nnabla_rl.models import DQNQFunction, QFunction
from nnabla_rl.replay_buffer import ReplayBuffer
from nnabla_rl.utils import context
from nnabla_rl.utils.data import marshal_experiences
from nnabla_rl.utils.misc import sync_model


[docs]@dataclass class DQNConfig(AlgorithmConfig): """List of configurations for DQN algorithm. Args: gamma (float): discount factor of rewards. Defaults to 0.99. learning_rate (float): learning rate which is set to all solvers. \ You can customize/override the learning rate for each solver by implementing the \ (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`) by yourself. \ Defaults to 0.00025. batch_size (int): training batch size. Defaults to 32. num_steps (int): number of steps for N-step Q targets. Defaults to 1. learner_update_frequency (int): the interval of learner update. Defaults to 4. target_update_frequency (int): the interval of target q-function update. Defaults to 10000. start_timesteps (int): the timestep when training starts.\ The algorithm will collect experiences from the environment by acting randomly until this timestep. Defaults to 50000. replay_buffer_size (int): the capacity of replay buffer. Defaults to 1000000. max_explore_steps (int): the number of steps decaying the epsilon value.\ The epsilon will be decayed linearly \ :math:`\\epsilon=\\epsilon_{init} - step\\times\\frac{\\epsilon_{init} - \ \\epsilon_{final}}{max\\_explore\\_steps}`.\ Defaults to 1000000. initial_epsilon (float): the initial epsilon value for ε-greedy explorer. Defaults to 1.0. final_epsilon (float): the last epsilon value for ε-greedy explorer. Defaults to 0.1. test_epsilon (float): the epsilon value on testing. Defaults to 0.05. grad_clip (Optional[Tuple[float, float]]): Clip the gradient of final layer. Defaults to (-1.0, 1.0). unroll_steps (int): Number of steps to unroll tranining network. The network will be unrolled even though the provided model doesn't have RNN layers. Defaults to 1. burn_in_steps (int): Number of burn-in steps to initiaze recurrent layer states during training. This flag does not take effect if given model is not an RNN model. Defaults to 0. reset_rnn_on_terminal (bool): Reset recurrent internal states to zero during training if episode ends. This flag does not take effect if given model is not an RNN model. Defaults to False. """ gamma: float = 0.99 learning_rate: float = 2.5e-4 batch_size: int = 32 num_steps: int = 1 # network update learner_update_frequency: float = 4 target_update_frequency: float = 10000 # buffers start_timesteps: int = 50000 replay_buffer_size: int = 1000000 # explore max_explore_steps: int = 1000000 initial_epsilon: float = 1.0 final_epsilon: float = 0.1 test_epsilon: float = 0.05 grad_clip: Optional[Tuple[float, float]] = (-1.0, 1.0) # rnn model support unroll_steps: int = 1 burn_in_steps: int = 0 reset_rnn_on_terminal: bool = True def __post_init__(self): """__post_init__ Check set values are in valid range. """ self._assert_between(self.gamma, 0.0, 1.0, "gamma") self._assert_positive(self.learning_rate, "learning_rate") self._assert_positive(self.batch_size, "batch_size") self._assert_positive(self.num_steps, "num_steps") self._assert_positive(self.learner_update_frequency, "learner_update_frequency") self._assert_positive(self.target_update_frequency, "target_update_frequency") self._assert_positive(self.start_timesteps, "start_timesteps") self._assert_positive(self.replay_buffer_size, "replay_buffer_size") self._assert_smaller_than(self.start_timesteps, self.replay_buffer_size, "start_timesteps") self._assert_between(self.initial_epsilon, 0.0, 1.0, "initial_epsilon") self._assert_between(self.final_epsilon, 0.0, 1.0, "final_epsilon") self._assert_between(self.test_epsilon, 0.0, 1.0, "test_epsilon") self._assert_positive(self.max_explore_steps, "max_explore_steps") self._assert_positive(self.unroll_steps, "unroll_steps") self._assert_positive_or_zero(self.burn_in_steps, "burn_in_steps")
class DefaultQFunctionBuilder(ModelBuilder[QFunction]): def build_model( # type: ignore[override] self, scope_name: str, env_info: EnvironmentInfo, algorithm_config: DQNConfig, **kwargs, ) -> QFunction: return DQNQFunction(scope_name, env_info.action_dim) class DefaultSolverBuilder(SolverBuilder): def build_solver( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: DQNConfig, **kwargs ) -> nn.solver.Solver: # this decay is equivalent to 'gradient momentum' and 'squared gradient momentum' of the nature paper decay: float = 0.95 momentum: float = 0.0 min_squared_gradient: float = 0.01 solver = NS.RMSpropGraves( lr=algorithm_config.learning_rate, decay=decay, momentum=momentum, eps=min_squared_gradient ) return solver class DefaultReplayBufferBuilder(ReplayBufferBuilder): def build_replay_buffer( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: DQNConfig, **kwargs ) -> ReplayBuffer: return ReplayBuffer(capacity=algorithm_config.replay_buffer_size) class DefaultExplorerBuilder(ExplorerBuilder): def build_explorer( # type: ignore[override] self, env_info: EnvironmentInfo, algorithm_config: DQNConfig, algorithm: "DQN", **kwargs, ) -> EnvironmentExplorer: explorer_config = EE.LinearDecayEpsilonGreedyExplorerConfig( warmup_random_steps=algorithm_config.start_timesteps, initial_step_num=algorithm.iteration_num, initial_epsilon=algorithm_config.initial_epsilon, final_epsilon=algorithm_config.final_epsilon, max_explore_steps=algorithm_config.max_explore_steps, ) explorer = EE.LinearDecayEpsilonGreedyExplorer( greedy_action_selector=algorithm._exploration_action_selector, random_action_selector=algorithm._random_action_selector, env_info=env_info, config=explorer_config, ) return explorer
[docs]class DQN(Algorithm): """DQN algorithm. This class implements the Deep Q-Network (DQN) algorithm proposed by V. Mnih, et al. in the paper: "Human-level control through deep reinforcement learning" For details see: https://www.nature.com/articles/nature14236 Note that default solver used in this implementation is RMSPropGraves as in the original paper. However, in practical applications, we recommend using Adam as the optimizer of DQN. You can replace the solver by implementing a (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`) and pass the solver on DQN class instantiation. Args: env_or_env_info\ (gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): the environment to train or environment info config (:py:class:`DQNConfig <nnabla_rl.algorithms.dqn.DQNConfig>`): the parameter for DQN training q_func_builder (:py:class:`ModelBuilder <nnabla_rl.builders.ModelBuilder>`): builder of q function model q_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of q function solver replay_buffer_builder (:py:class:`ReplayBufferBuilder <nnabla_rl.builders.ReplayBufferBuilder>`): builder of replay_buffer explorer_builder (:py:class:`ExplorerBuilder <nnabla_rl.builders.ExplorerBuilder>`): builder of environment explorer """ # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _config: DQNConfig _q: QFunction _q_solver: nn.solver.Solver _target_q: QFunction _replay_buffer: ReplayBuffer _explorer_builder: ExplorerBuilder _environment_explorer: EnvironmentExplorer _q_function_trainer: ModelTrainer _q_function_trainer_state: Dict[str, Any] _evaluation_actor: _GreedyActionSelector _exploration_actor: _GreedyActionSelector def __init__( self, env_or_env_info: Union[gym.Env, EnvironmentInfo], config: DQNConfig = DQNConfig(), q_func_builder: ModelBuilder[QFunction] = DefaultQFunctionBuilder(), q_solver_builder: SolverBuilder = DefaultSolverBuilder(), replay_buffer_builder: ReplayBufferBuilder = DefaultReplayBufferBuilder(), explorer_builder: ExplorerBuilder = DefaultExplorerBuilder(), ): super(DQN, self).__init__(env_or_env_info, config=config) self._explorer_builder = explorer_builder with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): self._q = q_func_builder(scope_name="q", env_info=self._env_info, algorithm_config=self._config) self._q_solver = q_solver_builder(env_info=self._env_info, algorithm_config=self._config) self._target_q = self._q.deepcopy("target_" + self._q.scope_name) self._replay_buffer = replay_buffer_builder(env_info=self._env_info, algorithm_config=self._config) self._environment_explorer = explorer_builder( env_info=self._env_info, algorithm_config=self._config, algorithm=self ) self._evaluation_actor = _GreedyActionSelector(self._env_info, self._q.shallowcopy()) self._exploration_actor = _GreedyActionSelector(self._env_info, self._q.shallowcopy()) @eval_api def compute_eval_action(self, state, *, begin_of_episode=False, extra_info={}): with nn.context_scope(context.get_nnabla_context(self._config.gpu_id)): (action, _), _ = epsilon_greedy_action_selection( state, self._evaluation_action_selector, self._random_action_selector, epsilon=self._config.test_epsilon, begin_of_episode=begin_of_episode, ) return action def _before_training_start(self, env_or_buffer): # set context globally to ensure that the training runs on configured gpu context.set_nnabla_context(self._config.gpu_id) self._environment_explorer = self._setup_environment_explorer(env_or_buffer) self._q_function_trainer = self._setup_q_function_training(env_or_buffer) def _setup_environment_explorer(self, env_or_buffer): return None if self._is_buffer(env_or_buffer) else self._explorer_builder(self._env_info, self._config, self) def _setup_q_function_training(self, env_or_buffer): trainer_config = MT.q_value_trainers.DQNQTrainerConfig( num_steps=self._config.num_steps, reduction_method="sum", grad_clip=self._config.grad_clip, unroll_steps=self._config.unroll_steps, burn_in_steps=self._config.burn_in_steps, reset_on_terminal=self._config.reset_rnn_on_terminal, ) q_function_trainer = MT.q_value_trainers.DQNQTrainer( train_functions=self._q, solvers={self._q.scope_name: self._q_solver}, target_function=self._target_q, env_info=self._env_info, config=trainer_config, ) sync_model(self._q, self._target_q) return q_function_trainer def _run_online_training_iteration(self, env): experiences = self._environment_explorer.step(env) self._replay_buffer.append_all(experiences) if self._config.start_timesteps < self.iteration_num: if self.iteration_num % self._config.learner_update_frequency == 0: self._dqn_training(self._replay_buffer) def _run_offline_training_iteration(self, buffer): self._dqn_training(buffer) def _evaluation_action_selector(self, s, *, begin_of_episode=False): return self._evaluation_actor(s, begin_of_episode=begin_of_episode) def _exploration_action_selector(self, s, *, begin_of_episode=False): return self._exploration_actor(s, begin_of_episode=begin_of_episode) def _random_action_selector(self, s, *, begin_of_episode=False): action = self._env_info.action_space.sample() return np.asarray(action).reshape((1,)), {} def _dqn_training(self, replay_buffer): num_steps = self._config.num_steps + self._config.burn_in_steps + self._config.unroll_steps - 1 experiences_tuple, info = replay_buffer.sample(self._config.batch_size, num_steps=num_steps) if num_steps == 1: experiences_tuple = (experiences_tuple,) assert len(experiences_tuple) == num_steps batch = None for experiences in reversed(experiences_tuple): (s, a, r, non_terminal, s_next, rnn_states_dict, *_) = marshal_experiences(experiences) rnn_states = rnn_states_dict["rnn_states"] if "rnn_states" in rnn_states_dict else {} batch = TrainingBatch( batch_size=self._config.batch_size, s_current=s, a_current=a, gamma=self._config.gamma, reward=r, non_terminal=non_terminal, s_next=s_next, weight=info["weights"], next_step_batch=batch, rnn_states=rnn_states, ) self._q_function_trainer_state = self._q_function_trainer.train(batch) if self.iteration_num % self._config.target_update_frequency == 0: sync_model(self._q, self._target_q) td_errors = self._q_function_trainer_state["td_errors"] replay_buffer.update_priorities(td_errors) def _models(self): models = {} models[self._q.scope_name] = self._q return models def _solvers(self): solvers = {} solvers[self._q.scope_name] = self._q_solver return solvers
[docs] @classmethod def is_supported_env(cls, env_or_env_info): env_info = ( EnvironmentInfo.from_env(env_or_env_info) if isinstance(env_or_env_info, gym.Env) else env_or_env_info ) return not env_info.is_continuous_action_env() and not env_info.is_tuple_action_env()
[docs] @classmethod def is_rnn_supported(self): return True
@property def latest_iteration_state(self): latest_iteration_state = super(DQN, self).latest_iteration_state if hasattr(self, "_q_function_trainer_state"): latest_iteration_state["scalar"].update({"q_loss": float(self._q_function_trainer_state["q_loss"])}) latest_iteration_state["histogram"].update( {"td_errors": self._q_function_trainer_state["td_errors"].flatten()} ) return latest_iteration_state @property def trainers(self): return {"q_function": self._q_function_trainer}