Source code for nnabla_rl.algorithms.categorical_ddqn

# Copyright 2021,2022,2023 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Union

import gym

import nnabla_rl.model_trainers as MT
from nnabla_rl.algorithms.categorical_dqn import (CategoricalDQN, CategoricalDQNConfig, DefaultExplorerBuilder,
                                                  DefaultReplayBufferBuilder, DefaultSolverBuilder,
                                                  DefaultValueDistFunctionBuilder)
from nnabla_rl.builders import ExplorerBuilder, ModelBuilder, ReplayBufferBuilder, SolverBuilder
from nnabla_rl.environments.environment_info import EnvironmentInfo
from nnabla_rl.models import ValueDistributionFunction
from nnabla_rl.utils.misc import sync_model


[docs]@dataclass class CategoricalDDQNConfig(CategoricalDQNConfig): pass
[docs]class CategoricalDDQN(CategoricalDQN): """Categorical Double DQN algorithm. This class implements the Categorical Double DQN algorithm introduced by M. Bellemare, et al. in the paper: "Rainbow: Combining Improvements in Deep Reinforcement Learning" For details see: https://arxiv.org/abs/1710.02298. The difference between Categorical DQN and this algorithm is the update target of q-value. This algorithm uses following double DQN style q-value target for Categorical Q value update. :math:`r + \\gamma Q_{\\text{target}}(s_{t+1}, \\arg\\max_{a}{Q(s_{t+1}, a)})`. Args: env_or_env_info \ (gym.Env or :py:class:`EnvironmentInfo <nnabla_rl.environments.environment_info.EnvironmentInfo>`): the environment to train or environment info config (:py:class:`CategoricalDDQNConfig <nnabla_rl.algorithms.categorical_ddqn.CategoricalDDQNConfig>`): configuration of the CategoricalDDQN algorithm value_distribution_builder (:py:class:`ModelBuilder[ValueDistributionFunctionFunction] \ <nnabla_rl.builders.ModelBuilder>`): builder of value distribution function models value_distribution_solver_builder (:py:class:`SolverBuilder <nnabla_rl.builders.SolverBuilder>`): builder of value distribution function solvers replay_buffer_builder (:py:class:`ReplayBufferBuilder <nnabla_rl.builders.ReplayBufferBuilder>`): builder of replay_buffer explorer_builder (:py:class:`ExplorerBuilder <nnabla_rl.builders.ExplorerBuilder>`): builder of environment explorer """ def __init__(self, env_or_env_info: Union[gym.Env, EnvironmentInfo], config: CategoricalDQNConfig = CategoricalDDQNConfig(), value_distribution_builder: ModelBuilder[ValueDistributionFunction] = DefaultValueDistFunctionBuilder(), value_distribution_solver_builder: SolverBuilder = DefaultSolverBuilder(), replay_buffer_builder: ReplayBufferBuilder = DefaultReplayBufferBuilder(), explorer_builder: ExplorerBuilder = DefaultExplorerBuilder()): super(CategoricalDDQN, self).__init__(env_or_env_info, config=config, value_distribution_builder=value_distribution_builder, value_distribution_solver_builder=value_distribution_solver_builder, replay_buffer_builder=replay_buffer_builder, explorer_builder=explorer_builder) def _setup_value_distribution_function_training(self, env_or_buffer): trainer_config = MT.q_value_trainers.CategoricalDDQNQTrainerConfig( num_steps=self._config.num_steps, v_min=self._config.v_min, v_max=self._config.v_max, num_atoms=self._config.num_atoms, reduction_method=self._config.loss_reduction_method, unroll_steps=self._config.unroll_steps, burn_in_steps=self._config.burn_in_steps, reset_on_terminal=self._config.reset_rnn_on_terminal) model_trainer = MT.q_value_trainers.CategoricalDDQNQTrainer( train_function=self._atom_p, solvers={self._atom_p.scope_name: self._atom_p_solver}, target_function=self._target_atom_p, env_info=self._env_info, config=trainer_config) # NOTE: Copy initial parameters after setting up the training # Because the parameter is created after training graph construction sync_model(self._atom_p, self._target_atom_p) return model_trainer